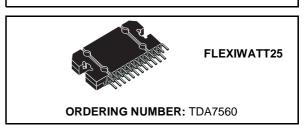


4 x 45W QUAD BRIDGE CAR RADIO AMPLIFIER PLUS HSD

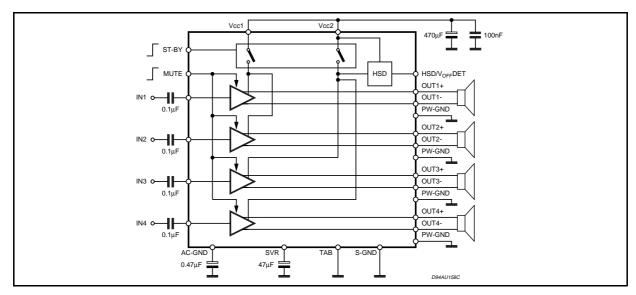
- SUPERIOR OUTPUT POWER CAPABILITY:
 - $4 \times 50W/4\Omega$ MAX.
 - 4 x 45W/4Ω EIAJ
 - 4 x 30W/4 Ω @ 14.4V, 1KHz, 10%
 - $4 \times 80W/2\Omega$ MAX.
 - 4 x 77W/2Ω EIAJ
 - 4 x 55W/2Ω @ 14.4V, 1KHz, 10%
- EXCELLENT 2Ω DRIVING CAPABILITY
- HI-FI CLASS DISTORTION
- LOW OUTPUT NOISE
- ST-BY FUNCTION
- MUTE FUNCTION
- AUTOMUTE AT MIN. SUPPLY VOLTAGE DE-TECTION
- LOW EXTERNAL COMPONENT COUNT:
 - INTERNALLY FIXED GAIN (26dB)
 - NO EXTERNAL COMPENSATION
 - NO BOOTSTRAP CAPACITORS
- ON BOARD 0.35A HIGH SIDE DRIVER


PROTECTIONS:

- OUTPUT SHORT CIRCUIT TO GND, TO V_S, ACROSS THE LOAD
- VERY INDUCTIVE LOADS
- OVERRATING CHIP TEMPERATURE WITH SOFT THERMAL LIMITER
- OUTPUT DC OFFSET DETECTION

BLOCK AND APPLICATION DIAGRAM

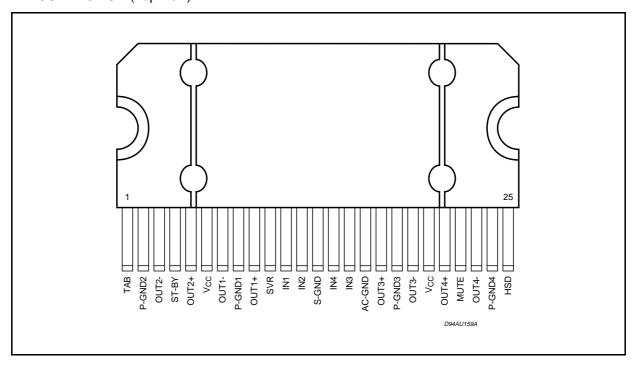
MULTIPOWER BCD TECHNOLOGY


MOSFET OUTPUT POWER STAGE

- LOAD DUMP VOLTAGE
- FORTUITOUS OPEN GND
- REVERSED BATTERY
- ESD

DESCRIPTION

The TDA7560 is a breakthrough BCD (Bipolar / CMOS / DMOS) technology class AB Audio Power Amplifier in Flexiwatt 25 package designed for high power car radio. The fully complementary P-Channel/N-Channel output structure allows a rail to rail output voltage swing which, combined with high output current and minimised saturation losses sets new power references in the car-radio field, with unparalleled distortion performances.



December 2001 1/10

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Operating Supply Voltage	18	V
V _{CC (DC)}	DC Supply Voltage	28	V
V _{CC (pk)}	Peak Supply Voltage (t = 50ms)	50	V
Io	Output Peak Current: Repetitive (Duty Cycle 10% at f = 10Hz) Non Repetitive (t = 100µs)	9 10	A A
P _{tot}	Power dissipation, (T _{case} = 70°C)	80	W
Tj	Junction Temperature	150	°C
T _{stg} Storage Temperature		- 55 to 150	°C

PIN CONNECTION (Top view)

THERMAL DATA

Symbol	Parameter	Value	Unit
R _{th j-case}	Thermal Resistance Junction to Case Max.	1	°C/W

4

ELECTRICAL CHARACTERISTICS (V_S = 13.2V; f = 1KHz; R_g = 600Ω ; R_L = 4Ω ; T_{amb} = 25° C; Refer to the test and application diagram, unless otherwise specified.)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit	
I _{q1}	Quiescent Current	R _L = ∞	120	200	320	mA	
Vos	Output Offset Voltage	Play Mode			±60	mV	
dV _{OS}	During mute ON/OFF output offset voltage				±60	mV	
Gv	Voltage Gain		25	26	27	dB	
dG _√	Channel Gain Unbalance				±1	dB	
Po	Output Power	$V_S = 13.2V$; THD = 10%	23	25		W	
		$V_S = 13.2V$; THD = 1% $V_S = 14.4V$; THD = 10%	16 28	19 30		W	
		$V_S = 14.4V$, $THD = 10\%$ $V_S = 14.4V$; $THD = 1\%$	20	23		W	
		$V_S = 13.2V$; THD = 10%, 2 Ω	42	45		W	
		$V_S = 13.2V$; THD = 1%, 2Ω	32	34	l	W	
		$V_S = 14.4V$; THD = 10%, 2 Ω $V_S = 14.4V$; THD = 1%, 2 Ω	50 40	55 43		W	
P _{o EIAJ}	EIAJ Output Power (*)	$V_S = 14.4V$; THD = 1%, 2Ω $V_S = 13.7V$; $R_L = 4\Omega$	40	43		W	
ı o EIAJ	. , ,	$V_S = 13.7V; R_L = 2\Omega$	_	45 77		W	
P _{o max.}	Max. Output Power (*)	$V_S = 14.4V; R_L = 4\Omega$ $V_S = 14.4V; R_L = 2\Omega$		50 80		W	
THD	Distortion	$P_0 = 4W$		0.006	0.05	%	
		$P_0 = 15W; R_L = 2\Omega$		0.015	0.07	%	
e _{No}	Output Noise	"A" Weighted Bw = 20Hz to 20KHz		35 50	50 70	μV	
SVR	Supply Voltage Rejection	$f = 100Hz$; $V_r = 1Vrms$	50	50 70	70	μV dB	
f _{ch}	High Cut-Off Frequency	$P_0 = 0.5W$	100	300		KHz	
R _i	Input Impedance	. 0 - 0.0**	80	100	120	KΩ	
C _T	Cross Talk	f = 1KHz P _O = 4W	60	70		dB	
		$f = 10KHz$ $P_0 = 4W$		60		dB	
I _{SB}	St-By Current Consumption	$V_{St-By} = 1.5V$	L		75	μА	
I _{pin4}	St-by pin Current	VSt-By = 1.5V to 3.5V			±10	μΑ	
V _{SB out}	St-By Out Threshold Voltage	(Amp: ON)	3.5			V	
V _{SB in}	St-By in Threshold Voltage	(Amp: OFF)			1.5	V	
A _M	Mute Attenuation	P _{Oref} = 4W	80	90		dB	
V _{M out}	Mute Out Threshold Voltage	(Amp: Play)				V	
V _{M in}	Mute In Threshold Voltage	(Amp: Mute)	1		1.5	V	
V _{AM in}	V _S Automute Threshold	(Amp: Mute) Att ≥ 80dB; P _{Oref} = 4W (Amp: Play)	6.5	7		V	
		Att < 0.1dB; P _O = 0.5W		7.5	8	V	
I _{pin22}	Muting Pin Current	V _{MUTE} = 1.5V (Sourced Current)	7	12	18	μА	
	<u> </u>	$V_{MUTE} = 3.5V$	-5		18	μА	
HSD SECTION							
V _{dropout}	Dropout Voltage	Io = 0.35A; Vs = 9 to 16V		0.25	0.6	V	
I _{prot}	Current Limits		400		800	mA	
	ETECTOR SECTION						
V _{M_ON}	Mute Voltage for DC offset	$V_{stby} = 5V$	8			V	
V _{M_OFF}	detection enabled		1		6	V	
V _{OFF}	Detected Differential Output Offset	$V_{\text{stby}} = 5V$; $V_{\text{mute}} = 8V$	±2	±3	±4	V	
V _{25_T}	Pin 25 Voltage for Detection = TRUE	$V_{\text{stby}} = 5V; V_{\text{mute}} = 8V$ $V_{\text{OFF}} > \pm 4V$	0		1.5	V	
V _{25_F}	Pin 25 Voltage for Detection = FALSE	$V_{Stby} = 5V$; $V_{mute} = 8V$ $V_{OFF} > \pm 2V$	12			V	

^(*) Saturated square wave output.

Figure 1: Standard Test and Application Circuit

Figure 2: P.C.B. and component layout of the figure 1 (1:1 scale)

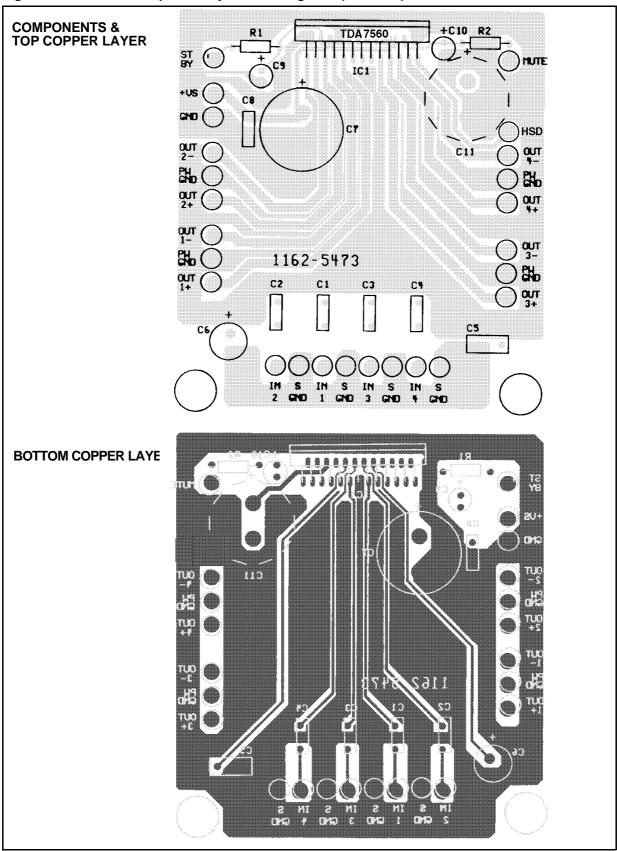


Figure 3. Quiescent current vs. supply voltage.

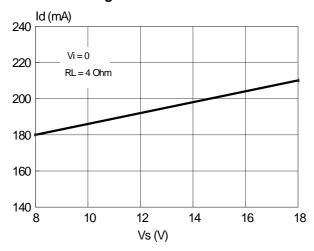


Figure 4. Output power vs. supply voltage.

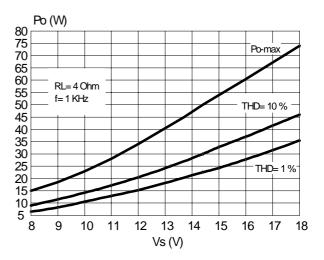


Figure 5. Output power vs. supply voltage.

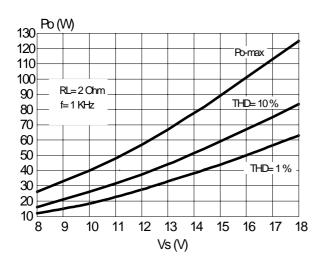


Figure 6. Distortion vs. output Power

Figure 7. Distortion vs. output power

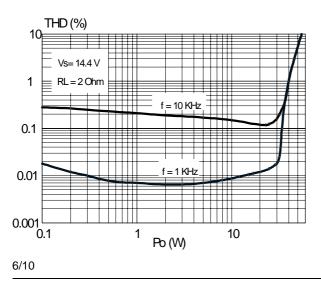


Figure 8. Distortion vs. frequency.

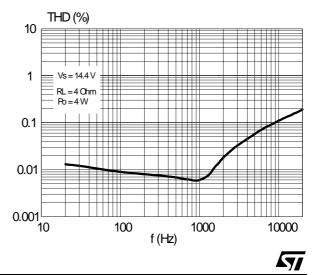
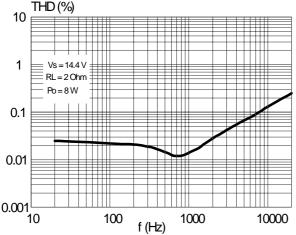



Figure 9. Distortion vs. frequency.

I (HZ)

Figure 11. Supply voltage rejection vs. fre-

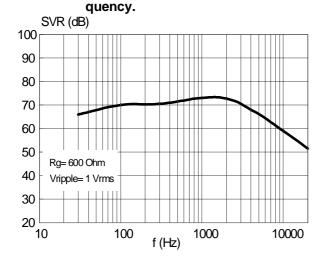


Figure 13. Output noise vs. source resistance.

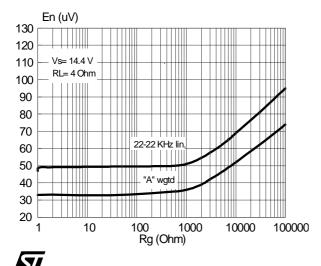


Figure 10. Crosstalk vs. frequency.

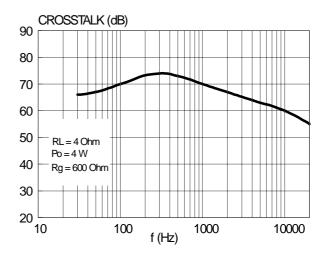


Figure 12. Output attenuation vs. supply voltage.

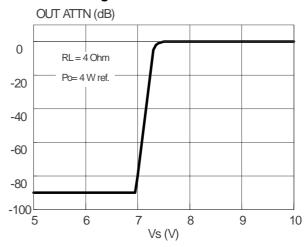
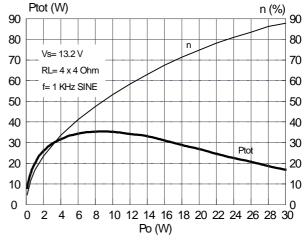
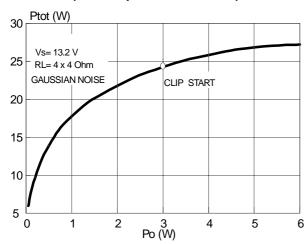




Figure 14. Power dissipation & efficiency vs. output power (sine-wave operation)

7/10

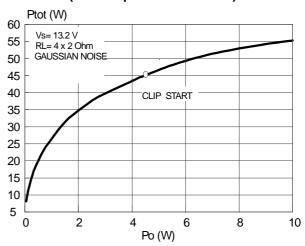
Figure 15. Power dissipation vs. ouput power (Music/Speech Simulation)

DC OFFSET DETECTOR

The TDA7560 integrates a DC offset detector to avoid that an anomalous DC offset on the inputs of the amplifier may be multiplied by the gain and result in a dangerous large offset on the outputs which may lead to speakers damage for overheating.

The feature is enabled by the MUTE pin and works with the amplifier umuted and with no signal on the inputs. The DC offset detection is signaled out on the HSD pin.

APPLICATION HINTS (ref. to the circuit of fig. 1) SVR


Besides its contribution to the ripple rejection, the SVR capacitor governs the turn ON/OFF time sequence and, consequently, plays an essential role in the pop optimization during ON/OFF transients.To conveniently serve both needs, ITS MINIMUM RECOMMENDED VALUE IS 10µF.

INPUT STAGE

The TDA7560's inputs are ground-compatible and can stand very high input signals (± 8Vpk) without any performances degradation.

If the standard value for the input capacitors (0.1 $\mu\text{F})$ is adopted, the low frequency cut-off will amount to 16 Hz.

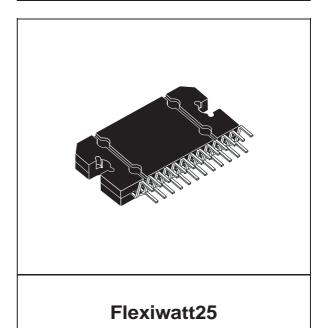
Figure 16. Power dissipation vs. output power (Music/Speech Simulation)

STAND-BY AND MUTING

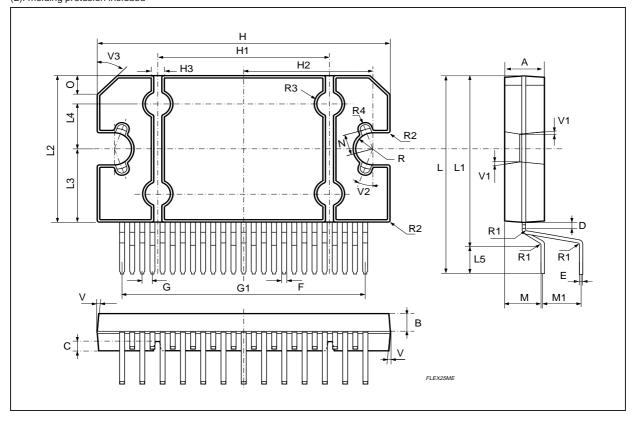
STAND-BY and MUTING facilities are both CMOS-COMPATIBLE. In absence of true CMOS ports or microprocessors, a direct connection to Vs of these two pins is admissible but a 470 kOhm equivalent resistance should present between the power supply and the muting and stand-by pins.

R-C cells have always to be used in order to smooth down the transitions for preventing any audible transient noises.

About the stand-by, the time constant to be assigned in order to obtain a virtually pop-free transition has to be slower than 2.5V/ms.


HEATSINK DEFINITION

Under normal usage (4 Ohm speakers) the heatsink's thermal requirements have to be deduced from fig. 15, which reports the simulated power dissipation when real music/speech programmes are played out. Noise with gaussian-distributed amplitude was employed for this simulation. Based on that, frequent clipping occurence (worst-case) will cause Pdiss = 26W. Assuming Tamb = 70°C and T_{CHIP} = 150°C as boundary conditions, the heatsink's thermal resistance should be approximately 2°C/W. This would avoid any thermal shutdown occurence even after long-term and full-volume operation.


8/10

DIM.	mm			inch			
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α	4.45	4.50	4.65	0.175	0.177	0.183	
В	1.80	1.90	2.00	0.070	0.074	0.079	
С		1.40			0.055		
D	0.75	0.90	1.05	0.029	0.035	0.041	
Е	0.37	0.39	0.42	0.014	0.015	0.016	
F (1)			0.57			0.022	
G	0.80	1.00	1.20	0.031	0.040	0.047	
G1	23.75	24.00	24.25	0.935	0.945	0.955	
H (2)	28.90	29.23	29.30	1.138	1.150	1.153	
H1		17.00			0.669		
H2		12.80			0.503		
H3		0.80			0.031		
L (2)	22.07	22.47	22.87	0.869	0.884	0.904	
L1	18.57	18.97	19.37	0.731	0.747	0.762	
L2 (2)	15.50	15.70	15.90	0.610	0.618	0.626	
L3	7.70	7.85	7.95	0.303	0.309	0.313	
L4		5			0.197		
L5		3.5			0.138		
M	3.70	4.00	4.30	0.145	0.157	0.169	
M1	3.60	4.00	4.40	0.142	0.157	0.173	
N		2.20			0.086		
0		2			0.079		
R		1.70			0.067		
R1		0.5			0.02		
R2		0.3			0.12		
R3		1.25			0.049		
R4	0.50 0.019						
V	5° (Typ.)						
V1	3° (Typ.)						
V2	20° (Typ.)						
V3	45° (Typ.)						

OUTLINE AND MECHANICAL DATA

(1): dam-bar protusion not included (2): molding protusion included

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

 $\hbox{@ 2001 STM}{}$ icroelectronics – Printed in Italy – All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.