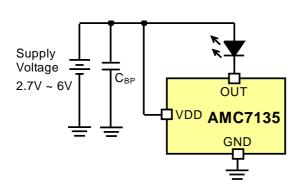
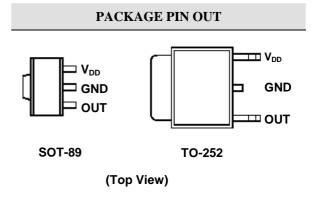


350mA ADVANCED CURRENT REGULATOR

DESCRIPTION


The AMC7135 is a low dropout current regulator rated for 350mA constant sink current. The low quiescent current and low dropout voltage is achieved by advanced Bi-CMOS process.

FEATURES

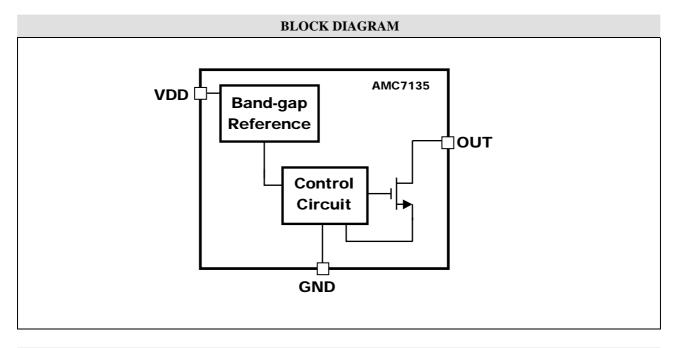

- No external component required.
- 350mA constant sink current.
- Output short / open circuit protection.
- **■** Low dropout voltage.
- **■** Low quiescent current
- **■** Build-in thermal protection
- Supply voltage range 2.7V ~ 6V
- 2KV HBM ESD protection
- Advanced Bi-CMOS process.
- SOT-89 and TO-252 package

TYPICAL APPLICATION CIRCUIT

APPLICATIONS

Power LED driver

ORDER INFORMATION							
I _{OUT} PK		SOT-89		TO-252			
$I_{ m OUT}$	1 K	3-pin	SJ	3-pin			
340-380mA	AMC7135PKF			AMC7135SJF			
300-340mA		AMC7135PKFA		AMC7135SJFA			


Note: 1. All surface-mount packages are available in Tape & Reel. Append the letter "T" to part number (i.e. AMC7135PKFAT).

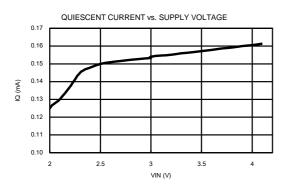
- 2. The letter "F" is marked for Lead Free process.
- 3. The letter "A" is marked for current ranking.

ABSOLUTE MAXIMUM RATINGS (Note)						
Input Voltage, V _{DD}	-0.3V to 7V					
Output Voltage, V _{OUT}	-0.3V to 7V					
Maximum Junction Temperature, T _J	150°C					
Storage Temperature Range	-40°C to 150°C					
Lead Temperature (Soldering, 10 seconds)	260°C					

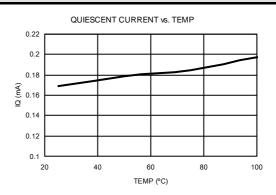
Note: Exceeding these ratings could cause damage to the device. All voltages are with respect to Ground. Currents are positive into, negative out of the specified terminal.

PIN DESCRIPTION						
Pin Name	Pin Function					
V_{DD}	Power supply.					
OUT	Output pins. Connected to load.					
GND	Ground.					

RECOMMENDED OPERATING CONDITIONS								
Parameter	Symbol	Min	Тур	Max				
Supply Voltage	V_{DD}	2.7		6				


Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	$V_{ m DD}$	2.7		6	V
Output Sink Current	I_{OUT}			400	mA
Operating Free-air Temperature Range	Та	-40		+85	$^{\circ}\mathbb{C}$


DC ELECTRICAL CHARACTERISTICS


V _{DD} =3.7V, Ta=25°C, No Load, (Unless otherwise noted)								
Parameter	Symbol	Condition	Min	Тур	Max	Unit	Apply Pin	
Outnut Sinle Cumont	ī	V _{OUT} =0.2V	340	360	380	mA		
Output Sink Current	I_{SINK}	V _{OUT} =0.2V, Rank A	300	320	340	mA		
Load Regulation		$V_{OUT}=0.2V$ to $3V$			3	mA/V	OUT	
Line Regulation		V_{DD} = 3V to 6V, V_{OUT} =0.2V			3	mA/V		
Output Dropout Voltage	V_{OUTL}			120	·	mV		
Supply Current Consumption	I_{DD}			200		uA	VDD	

Note1: Output dropout voltage: 90% x I_{OUT} @ V_{OUT} =200mV

TYPICAL OPERATION CHRACTERISTICS

APPLICATION INFORMATION

The Maximum Power Dissipation on Regulator:

 $P_{D(MAX)} = V_{OUT(MAX)} \times I_{OUT(NOM)} + V_{IN(MAX)} \times I_{Q}$

 $V_{OUT(MAX)}$ = the maximum voltage on output pin;

 $I_{OUT(NOM)}$ = the nominal output current;

 I_Q = the quiescent current the regulator consumes at IOUT(MAX);

 $V_{IN(MAX)}$ = the maximum input voltage.

Thermal Consideration:

The AMC7135 has internal power and thermal limiting circuitry designed to protect the device under overload conditions. However, maximum junction temperature ratings should not be exceeded under continuous normal load conditions. The thermal protection circuit of AMC7135 prevents the device from damage due to excessive power dissipation. When the device temperature rises to approximately 150°C, the regulator will be turned off. When power consumption is over about 700mW (SOT-89 package, at T_A =70°C) or 1000mW (TO-252 package, at T_A =70°C), additional heat sink is required to control the junction temperature below 120°C.

The junction temperature is:

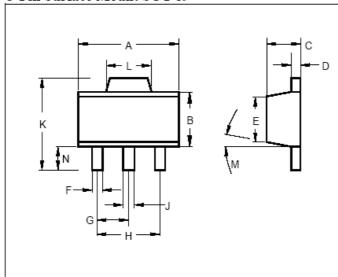
$$T_I = P_D (\theta_{IT} + \theta_{CS} + \theta_{SA}) + T_A$$

P_D: Dissipated power.

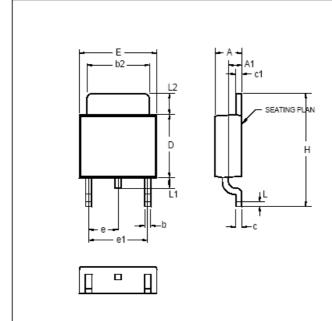
 $\theta_{\rm JT}$: Thermal resistance from the junction to the mounting tab of the package.

 θ _{CS}. Thermal resistance through the interface between the IC and the surface on which it is mounted. (typically, θ _{CS} < 1.0°C/W)

 θ_{SA} : Thermal resistance from the mounting surface to ambient (thermal resistance of the heat sink).


If PC Board copper is going to be used as a heat sink, below table can be used to determine the appropriate size of copper foil required. For multi-layered PCB, these layers can also be used as a heat sink. They can be connected with several through-hole vias.

PCB θ sa (°C/W)	59	45	38	33	27	24	21
PCB heat sink size (mm ²)	500	1000	1500	2000	3000	4000	5000


PACKAGE

3-Pin Surface Mount SOT-89

		NCHES	3	MIL	LIMETE	ERS
	MIN	MIN TYP MAX		MIN	TYP	MAX
Α	0.173	-	0.181	4.39	-	4.59
В	0.090	-	0.102	2.28	-	2.59
С	0.055	,	0.063	1.39	-	1.60
D	0.015	1	0.017	0.38	1	0.43
Ε	0.084	-	0.090	2.13	-	2.28
F	0.016	-	0.019	0.33	-	0.48
G	0.	0.059 BSC			.49 BS	С
Н	0.	118 BS	С	2	2.99 BSC	
J	0.018	-	0.022	0.45	-	0.55
K	0.155	-	0.167	3.94	-	4.24
L	0.067	-	0.072	1.70	-	1.82
М	0°	-	8°	0°	-	8°
N	0.035	-	0.047	0.89	-	1.19

3-Pin Surface Mount TO-252 (SJ)

	ı	NCHES	3	MIL	LIMETE	ERS
	MIN	TYP	MAX	MIN	TYP	MAX
Α	0.086	-	0.094	2.18	-	2.39
A1	0.040	-	0.050	1.02	-	1.27
b	-	0.024	-	1	0.61	-
b2	0.205	1	0.215	5.21	-	5.46
С	0.018	ı	0.023	0.46	1	0.58
с1	0.018	1	0.023	0.46	1	0.58
D	0.210	-	0.220	5.33	-	5.59
Е	0.250	ı	0.265	6.35	1	6.73
е	0.	090 BS	C	2	.29 BS	С
e1	0.	0.180 BSC			.58 BS	С
Н	0.370	-	0.410	9.40	-	10.41
L	0.020	-	-	0.51	-	-
L1	0.025	-	0.040	0.64	-	1.02
L2	0.060	-	0.080	1.52	-	2.03